Academic Geriatric Resource Center
Increase Font Size

AT A GLANCE

Glossary

0. Introduction
1. Demography And Epidemiology
1.1 The Changing Face of Aging: Objectives
1.2 Local and Regional Variations Among Older Adults in the United States
1.3 Implications of an Aging Society for Health Care Needs and Resources
1.4 Common Chronic Conditions Associated with Advanced Age
1.5 Post Test
2. Biology and Physiology of Aging
2.1 Introduction and Background
2.2 Theories of Aging
2.3 Physiological Changes with Aging
2.3.1 Loss of Homeostatic Reserve--Hyperthermia
2.3.2 Loss of Homeostatic Reserve--Hypothermia
2.3.3 Vulnerability of Older Adults to Hypothermia
2.3.4 Clinical Importance of Vulnerability to Hypothermia
2.3.5 Loss of Homeostatic Reserve--Other Examples and Clinical Implications
2.3.6 Clinically Important Age-Related Changes in Organ Systems
2.3.7 Clinically Important Age-Related Changes in the Renal System
2.3.8 Clinical Significance of Age-Related Changes in Renal System
2.3.9 Clinically Important Age-Related Changes in the Cardiovascular System
2.3.10 Clinical Significance of Age-Related Changes in the Cardiovascular System
2.3.11 Clinically Important Age-Related Changes in the Pulmonary System
2.3.12 Clinical Significance of Age-Related Changes in the Pulmonary System
2.3.13 Age-Related Changes in the Neurologic System
2.3.14 Clinical Significance of Age-Related Changes in the Neurologic System (I)
2.3.15 Clinical Significance of Age-Related Changes in the Neurologic System (II)
2.3.16 Clinically Important Age-Related Changes in the Gastrointestinal System
2.3.17 Clinical Significance of Age-Related Changes in the Gastrointestinal System (I)
2.3.18 Clinical Significance of Age-Related Changes in the Gastrointestinal System (II)
2.3.19 Clinically Important Age-Related Changes in the Immune System
2.3.20 Clinical Significance of Age-Related Changes in the Immune System
2.3.21 Clinically Important Age-Related Changes in the Endocrine System (I)
2.3.22 Clinically Important Age-Related Changes in the Endocrine System (II)
2.3.23 Clinical Significance of Age-Related Changes in the Endocrine System
2.3.24 Clinically Important Age-Related Changes in the Musculoskeletal System
2.3.25 Clinical Significance of Age-Related Changes in the Musculoskeletal System (I)
2.3.26 Clinical Significance of Age-Related Changes in the Musculoskeletal System (II)
2.3.27 Clinically Important Age-Related Changes in the Genitourinary System (I)
2.3.28 Clinically Important Age-Related Changes in the Genitourinary System (II)
2.3.29 Clinical Significance of Age-Related Changes in the Genitourinary System
2.3.30 Clinically Important Age-Related Changes in the Sensory Systems
2.3.31 Clinical Significance of Age-Related Changes in the Sensory Systems (I)
2.3.32 Clinical Significance of Age-Related Changes in the Sensory Systems (II)
2.3.33 Clinically Important Age-Related Changes in the Integument
2.3.34 Clinical Significance of Age-Related Changes in the Integument
2.4 Pharmacologic Considerations
2.5 Post Test
3. Socio-cultural And Psychologicial…
3.1 Module Objectives
3.2 Social Theories of Aging
3.3 Psychological Development In Late Life
3.4 Ethno-Cultural Issues And Age-Stratified Societies
3.5 Late-Life Transitions
3.6 Dependent Elders: Special Concerns
3.7 Cultural Views of Death
3.8 References
3.9 Post Test
4. Assessment Of The Geriatric…
4.1 Module Objectives
4.2 Domains of Assessment: Functional Assessment
4.2.1 How to Use Information from a Functional Assessment
4.2.2 Vision Impairment
4.2.3 Hearing Impairment (I)
4.2.4 Hearing Impairment (II)
4.2.5 Oral and Dental Health
4.2.6 Introduction to Oral Health Assessment
4.2.7 Oral Health Assessment
4.2.8 Common Oral Conditions in Older Adults: Tooth Loss (I)
4.2.9 Common Oral Conditions in Older Adults: Tooth Loss (II)
4.2.10 Common Oral Conditions in Older Adults: Care of Dentures
4.2.11 Common Oral Conditions in Older Adults: Dental Decay
4.2.12 Common Oral Conditions in Older Adults: Periodontal Disease
4.2.13 Common Oral Conditions in Older Adults: Candidiasis Infection
4.2.14 Common Oral Conditions in Older Adults: Leukoplakia and the Risk for Oral Cancer
4.2.15 Guidelines for a Dental Referral
4.2.16 Falls and Gait Assessment
4.2.17 Assessing for Falls
4.2.18 Techniques for Gait Assessment
4.2.19 Gait Assessments and Falls Interventions
4.2.20 Risk Factors for Falls and Targeted Interventions
4.2.21 Modification of Risk Factors: Ability to Get Up After a Fall
4.2.22 Modification of Risk Factors: Fracture Risk
4.2.23 Modification of Risk Factors: Anticoagulation
4.2.24 Incontinence
4.2.25 Skin Breakdown: Pressure Ulcers
4.2.26 Cognition/Dementia
4.2.27 Benefits of Early Detection of Dementia
4.2.28 Screening Techniques for Dementia
4.2.29 Decision-Making about Dementia Screening
4.2.30 Nutrition
4.2.31 Alcohol Use and Alcoholism
4.2.32 Medication and Complementary Therapies
4.2.33 Case Example: Mr. Singh
4.2.34 Mr. Singh--Use of Herbal Medicines
4.2.35 Mr. Singh--Possible Interventions
4.2.36 Mr. Singh--Concerns about Marathon Running at 92?
4.2.37 Mr. Singh--Considerations for Patient/Family Well-Being
4.2.38 Assessing for Polypharmacy (I)
4.2.39 Assessing for Polypharmacy (II)
4.3 Domains Of Assessment: Psychosocial Health And Functioning
4.4 Special Considerations In Assessment
4.5 Post Test
5. Health Care Policies
5.1 Module Objectives
5.2 The Policy-Making Process
5.3 Financing Health & Long Term Care
5.4 Quality Of Care Issues In Long Term Care
5.5 Need And Access Across The Spectrum Of Care
5.6 References
5.7 Post Test
6. Exploring Age-Related Body…
6.1 Cardiovascular System
6.2 Endocrine System
6.3 Immune System
6.4 Musculo-Skeletal System
6.5 Neurological System
6.6 Renal System
6.7 Post Test

Module 6: Exploring Age-Related Body Systems Changes

6.6: Renal System



6.6.11: Evaluation of Renal Function

One of the most common measures used to assess renal function is serum creatinine.

Because serum creatinine is not a good measure of renal function, it is prudent, especially when giving drugs, to check creatinine clearance, or at least use one of the formulas, and to check for blood levels of drugs - e.g. peaks and troughs.

Recommend formulas to estimate creatinine clearance:

                 
CC (ml/min) =

(140-age,yr) x wgt in Kg
  72 X Serum Creatinine (mg/dl)

This is the Cockcroft & Gault formula which uses body weight in Kg; The Lott-Hayton formula uses lean body weight. Some recommend multiplying the formula by .15 (substracting 15%) for women because of their smaller size.

An important caveat: Formulas may get you in the ballpark—but be careful. Data suggest that these formulas can both under and over estimate renal function. Many factors, like diet, can affect creatinine, and these are often overlooked. Yet many elderly individuals may be malnourished, especially in acute care settings or when chronically ill. In addition, the formulas are usually derived from healthy individuals in a steady state—a state that is often not representative of the clients that we often deal with. Use of the C/G equation is especially limited in persons who have been bed bound for more than a week, suffer from a muscle wasting disease, or are taking drugs that “artificially” elevate serum creatinine. The ideal body weight should be used for those individuals who are obese.


Question:

Given the changes that have been discussed regarding renal function, which of the following should be true:

Serum creatinine levels stay within normal limits in healthy older adults.
Serum creatinine levels increase as result of decreased GFR.
Serum creatinine levels decrease because of decreased reabsorption at the kidney level.


Module 6: Exploring Age-Related Body Systems Changes
6.6.10 Endocrine Functions…
6.6.12 What are the Clinical…