Academic Geriatric Resource Center
Increase Font Size

AT A GLANCE

Glossary

0. Introduction
1. Demography And Epidemiology
1.1 The Changing Face of Aging: Objectives
1.2 Local and Regional Variations Among Older Adults in the United States
1.3 Implications of an Aging Society for Health Care Needs and Resources
1.4 Common Chronic Conditions Associated with Advanced Age
1.5 Post Test
2. Biology and Physiology of Aging
2.1 Introduction and Background
2.2 Theories of Aging
2.3 Physiological Changes with Aging
2.3.1 Loss of Homeostatic Reserve--Hyperthermia
2.3.2 Loss of Homeostatic Reserve--Hypothermia
2.3.3 Vulnerability of Older Adults to Hypothermia
2.3.4 Clinical Importance of Vulnerability to Hypothermia
2.3.5 Loss of Homeostatic Reserve--Other Examples and Clinical Implications
2.3.6 Clinically Important Age-Related Changes in Organ Systems
2.3.7 Clinically Important Age-Related Changes in the Renal System
2.3.8 Clinical Significance of Age-Related Changes in Renal System
2.3.9 Clinically Important Age-Related Changes in the Cardiovascular System
2.3.10 Clinical Significance of Age-Related Changes in the Cardiovascular System
2.3.11 Clinically Important Age-Related Changes in the Pulmonary System
2.3.12 Clinical Significance of Age-Related Changes in the Pulmonary System
2.3.13 Age-Related Changes in the Neurologic System
2.3.14 Clinical Significance of Age-Related Changes in the Neurologic System (I)
2.3.15 Clinical Significance of Age-Related Changes in the Neurologic System (II)
2.3.16 Clinically Important Age-Related Changes in the Gastrointestinal System
2.3.17 Clinical Significance of Age-Related Changes in the Gastrointestinal System (I)
2.3.18 Clinical Significance of Age-Related Changes in the Gastrointestinal System (II)
2.3.19 Clinically Important Age-Related Changes in the Immune System
2.3.20 Clinical Significance of Age-Related Changes in the Immune System
2.3.21 Clinically Important Age-Related Changes in the Endocrine System (I)
2.3.22 Clinically Important Age-Related Changes in the Endocrine System (II)
2.3.23 Clinical Significance of Age-Related Changes in the Endocrine System
2.3.24 Clinically Important Age-Related Changes in the Musculoskeletal System
2.3.25 Clinical Significance of Age-Related Changes in the Musculoskeletal System (I)
2.3.26 Clinical Significance of Age-Related Changes in the Musculoskeletal System (II)
2.3.27 Clinically Important Age-Related Changes in the Genitourinary System (I)
2.3.28 Clinically Important Age-Related Changes in the Genitourinary System (II)
2.3.29 Clinical Significance of Age-Related Changes in the Genitourinary System
2.3.30 Clinically Important Age-Related Changes in the Sensory Systems
2.3.31 Clinical Significance of Age-Related Changes in the Sensory Systems (I)
2.3.32 Clinical Significance of Age-Related Changes in the Sensory Systems (II)
2.3.33 Clinically Important Age-Related Changes in the Integument
2.3.34 Clinical Significance of Age-Related Changes in the Integument
2.4 Pharmacologic Considerations
2.5 Post Test
3. Socio-cultural And Psychologicial…
3.1 Module Objectives
3.2 Social Theories of Aging
3.3 Psychological Development In Late Life
3.4 Ethno-Cultural Issues And Age-Stratified Societies
3.5 Late-Life Transitions
3.6 Dependent Elders: Special Concerns
3.7 Cultural Views of Death
3.8 References
3.9 Post Test
4. Assessment Of The Geriatric…
4.1 Module Objectives
4.2 Domains of Assessment: Functional Assessment
4.2.1 How to Use Information from a Functional Assessment
4.2.2 Vision Impairment
4.2.3 Hearing Impairment (I)
4.2.4 Hearing Impairment (II)
4.2.5 Oral and Dental Health
4.2.6 Introduction to Oral Health Assessment
4.2.7 Oral Health Assessment
4.2.8 Common Oral Conditions in Older Adults: Tooth Loss (I)
4.2.9 Common Oral Conditions in Older Adults: Tooth Loss (II)
4.2.10 Common Oral Conditions in Older Adults: Care of Dentures
4.2.11 Common Oral Conditions in Older Adults: Dental Decay
4.2.12 Common Oral Conditions in Older Adults: Periodontal Disease
4.2.13 Common Oral Conditions in Older Adults: Candidiasis Infection
4.2.14 Common Oral Conditions in Older Adults: Leukoplakia and the Risk for Oral Cancer
4.2.15 Guidelines for a Dental Referral
4.2.16 Falls and Gait Assessment
4.2.17 Assessing for Falls
4.2.18 Techniques for Gait Assessment
4.2.19 Gait Assessments and Falls Interventions
4.2.20 Risk Factors for Falls and Targeted Interventions
4.2.21 Modification of Risk Factors: Ability to Get Up After a Fall
4.2.22 Modification of Risk Factors: Fracture Risk
4.2.23 Modification of Risk Factors: Anticoagulation
4.2.24 Incontinence
4.2.25 Skin Breakdown: Pressure Ulcers
4.2.26 Cognition/Dementia
4.2.27 Benefits of Early Detection of Dementia
4.2.28 Screening Techniques for Dementia
4.2.29 Decision-Making about Dementia Screening
4.2.30 Nutrition
4.2.31 Alcohol Use and Alcoholism
4.2.32 Medication and Complementary Therapies
4.2.33 Case Example: Mr. Singh
4.2.34 Mr. Singh--Use of Herbal Medicines
4.2.35 Mr. Singh--Possible Interventions
4.2.36 Mr. Singh--Concerns about Marathon Running at 92?
4.2.37 Mr. Singh--Considerations for Patient/Family Well-Being
4.2.38 Assessing for Polypharmacy (I)
4.2.39 Assessing for Polypharmacy (II)
4.3 Domains Of Assessment: Psychosocial Health And Functioning
4.4 Special Considerations In Assessment
4.5 Post Test
5. Health Care Policies
5.1 Module Objectives
5.2 The Policy-Making Process
5.3 Financing Health & Long Term Care
5.4 Quality Of Care Issues In Long Term Care
5.5 Need And Access Across The Spectrum Of Care
5.6 References
5.7 Post Test
6. Exploring Age-Related Body…
6.1 Cardiovascular System
6.2 Endocrine System
6.3 Immune System
6.4 Musculo-Skeletal System
6.5 Neurological System
6.6 Renal System
6.7 Post Test

Module 6: Exploring Age-Related Body Systems Changes

6.5: Neurological System



6.5.9: Central Neurotransmitters and Aging

There are numerous putative neurotransmitters within the nervous system. These include the Monamines which are comprised of the catacholamines (norepinephrine, dopamine) and the indoleethyline, 5-hydroxytryptamine (serotonin), as well as acethylcholine. Others include various peptids and amino acids such as GABA and glycine. Alterations in the levels of various neurotransmitters or their receptors have been studied extensively, but much of this research has been accomplished in animals and many of the findings are conflicting. As noted earlier, data support changes in both norepinephrine and dopamine which may impact gait and balance as well as cognitive functioning. Changes in acetylcholine (ACH) in Alzheimer’s disease underpins the use of cholinergic drugs such as Tacrine (Cognex), Rivastigmine (Exelon), and Galantamine (Reminyl) each of which increases ACH levels, although in slightly different ways.

However, what may be KEY in terms of clinical findings is the imbalance that changes in the various neurotransmitters can create in the regulation of normal physiologic functioning.

An example is Parkinson’s disease where there is a significant loss of dopamine. This off sets the balance that is usually present among the various neurotransmitters that facilitate or inhibit movement—especially GABA and acetycholine. But similar dysregulation can occur in other systems.

motor outflow chart

Increasingly, a range of neurotransmitters are found to be involved in various aspects of cognitive functioning, and changes in their levels, neurons, or synapses can result in problems related to maintaining the smooth interconnected functioning of the nervous system. Neurotransmitters and aging is an area of current research.

Indiana State’s biochemistry department posts information on known neurotransmitters on their site at Biochemistry of Neurotransmitters. This site provides interesting information on neurotransmitters. As more material becomes available it will be added into text. If you find a site that is of interest and you feel is content correct, please let us know.


Module 6: Exploring Age-Related Body Systems Changes
6.5.8 Cerebral Blood Flow…
6.5.10 Neurotrophic Growth…