Academic Geriatric Resource Center
Increase Font Size

AT A GLANCE

Glossary

0. Introduction
1. Demography And Epidemiology
1.1 The Changing Face of Aging: Objectives
1.2 Local and Regional Variations Among Older Adults in the United States
1.3 Implications of an Aging Society for Health Care Needs and Resources
1.4 Common Chronic Conditions Associated with Advanced Age
1.5 Post Test
2. Biology and Physiology of Aging
2.1 Introduction and Background
2.2 Theories of Aging
2.3 Physiological Changes with Aging
2.3.1 Loss of Homeostatic Reserve--Hyperthermia
2.3.2 Loss of Homeostatic Reserve--Hypothermia
2.3.3 Vulnerability of Older Adults to Hypothermia
2.3.4 Clinical Importance of Vulnerability to Hypothermia
2.3.5 Loss of Homeostatic Reserve--Other Examples and Clinical Implications
2.3.6 Clinically Important Age-Related Changes in Organ Systems
2.3.7 Clinically Important Age-Related Changes in the Renal System
2.3.8 Clinical Significance of Age-Related Changes in Renal System
2.3.9 Clinically Important Age-Related Changes in the Cardiovascular System
2.3.10 Clinical Significance of Age-Related Changes in the Cardiovascular System
2.3.11 Clinically Important Age-Related Changes in the Pulmonary System
2.3.12 Clinical Significance of Age-Related Changes in the Pulmonary System
2.3.13 Age-Related Changes in the Neurologic System
2.3.14 Clinical Significance of Age-Related Changes in the Neurologic System (I)
2.3.15 Clinical Significance of Age-Related Changes in the Neurologic System (II)
2.3.16 Clinically Important Age-Related Changes in the Gastrointestinal System
2.3.17 Clinical Significance of Age-Related Changes in the Gastrointestinal System (I)
2.3.18 Clinical Significance of Age-Related Changes in the Gastrointestinal System (II)
2.3.19 Clinically Important Age-Related Changes in the Immune System
2.3.20 Clinical Significance of Age-Related Changes in the Immune System
2.3.21 Clinically Important Age-Related Changes in the Endocrine System (I)
2.3.22 Clinically Important Age-Related Changes in the Endocrine System (II)
2.3.23 Clinical Significance of Age-Related Changes in the Endocrine System
2.3.24 Clinically Important Age-Related Changes in the Musculoskeletal System
2.3.25 Clinical Significance of Age-Related Changes in the Musculoskeletal System (I)
2.3.26 Clinical Significance of Age-Related Changes in the Musculoskeletal System (II)
2.3.27 Clinically Important Age-Related Changes in the Genitourinary System (I)
2.3.28 Clinically Important Age-Related Changes in the Genitourinary System (II)
2.3.29 Clinical Significance of Age-Related Changes in the Genitourinary System
2.3.30 Clinically Important Age-Related Changes in the Sensory Systems
2.3.31 Clinical Significance of Age-Related Changes in the Sensory Systems (I)
2.3.32 Clinical Significance of Age-Related Changes in the Sensory Systems (II)
2.3.33 Clinically Important Age-Related Changes in the Integument
2.3.34 Clinical Significance of Age-Related Changes in the Integument
2.4 Pharmacologic Considerations
2.5 Post Test
3. Socio-cultural And Psychologicial…
3.1 Module Objectives
3.2 Social Theories of Aging
3.3 Psychological Development In Late Life
3.4 Ethno-Cultural Issues And Age-Stratified Societies
3.5 Late-Life Transitions
3.6 Dependent Elders: Special Concerns
3.7 Cultural Views of Death
3.8 References
3.9 Post Test
4. Assessment Of The Geriatric…
4.1 Module Objectives
4.2 Domains of Assessment: Functional Assessment
4.2.1 How to Use Information from a Functional Assessment
4.2.2 Vision Impairment
4.2.3 Hearing Impairment (I)
4.2.4 Hearing Impairment (II)
4.2.5 Oral and Dental Health
4.2.6 Introduction to Oral Health Assessment
4.2.7 Oral Health Assessment
4.2.8 Common Oral Conditions in Older Adults: Tooth Loss (I)
4.2.9 Common Oral Conditions in Older Adults: Tooth Loss (II)
4.2.10 Common Oral Conditions in Older Adults: Care of Dentures
4.2.11 Common Oral Conditions in Older Adults: Dental Decay
4.2.12 Common Oral Conditions in Older Adults: Periodontal Disease
4.2.13 Common Oral Conditions in Older Adults: Candidiasis Infection
4.2.14 Common Oral Conditions in Older Adults: Leukoplakia and the Risk for Oral Cancer
4.2.15 Guidelines for a Dental Referral
4.2.16 Falls and Gait Assessment
4.2.17 Assessing for Falls
4.2.18 Techniques for Gait Assessment
4.2.19 Gait Assessments and Falls Interventions
4.2.20 Risk Factors for Falls and Targeted Interventions
4.2.21 Modification of Risk Factors: Ability to Get Up After a Fall
4.2.22 Modification of Risk Factors: Fracture Risk
4.2.23 Modification of Risk Factors: Anticoagulation
4.2.24 Incontinence
4.2.25 Skin Breakdown: Pressure Ulcers
4.2.26 Cognition/Dementia
4.2.27 Benefits of Early Detection of Dementia
4.2.28 Screening Techniques for Dementia
4.2.29 Decision-Making about Dementia Screening
4.2.30 Nutrition
4.2.31 Alcohol Use and Alcoholism
4.2.32 Medication and Complementary Therapies
4.2.33 Case Example: Mr. Singh
4.2.34 Mr. Singh--Use of Herbal Medicines
4.2.35 Mr. Singh--Possible Interventions
4.2.36 Mr. Singh--Concerns about Marathon Running at 92?
4.2.37 Mr. Singh--Considerations for Patient/Family Well-Being
4.2.38 Assessing for Polypharmacy (I)
4.2.39 Assessing for Polypharmacy (II)
4.3 Domains Of Assessment: Psychosocial Health And Functioning
4.4 Special Considerations In Assessment
4.5 Post Test
5. Health Care Policies
5.1 Module Objectives
5.2 The Policy-Making Process
5.3 Financing Health & Long Term Care
5.4 Quality Of Care Issues In Long Term Care
5.5 Need And Access Across The Spectrum Of Care
5.6 References
5.7 Post Test
6. Exploring Age-Related Body…
6.1 Cardiovascular System
6.2 Endocrine System
6.3 Immune System
6.4 Musculo-Skeletal System
6.5 Neurological System
6.6 Renal System
6.7 Post Test

Module 6: Exploring Age-Related Body Systems Changes

6.2: Endocrine System



6.2.9: CRH, Adrenocorticotropic Hormone/Corticotropin (ACTH), and Cortisol

The hypothalamic-pituitary-adrenal axis is extremely important in the regulation of our response to many external and internal demands or stressors.

slide 6

HypothalamusThe Adrenal Glands are located just over and anterior to each kidney and are made up of two fairly distinct components: the cortex or outer layer and the medulla.

For more information and histological slides of the adrenal glands, see: Functional Anatomy of the Adrenal Gland (NOTE: This link will open in a new browser window which you can close to return here.)

The Cortex has 3 layers

  • Zona glomerulosa—outer—minerocorticoids (aldosterone)
  • Zona Facicularis—middle—glucocorticoids (cortisol), adrenal androgens
  • Zona reticularis—inner—adrenal androgens, glucocorticoids

The Medulla produces mainly Epinephrine (some norepinephrine).

The glucocorticoids that are secreted by the adrenal cortex exert widespread effects, including: increased glucose production, protein breakdown and fatty acid mobilization; and suppression of the immune response and inflammation. They have also been implicated in alterations in memory with age.

Although some data suggest cortisol levels may be higher in the evening in older vs. younger adults (Ferrari, Casarotti, et al., 2001; Seeman, Singer et al., 2001), basal levels of glucocorticoids are felt not to change significantly from youth to old age in humans. Both secretion and clearance rates appear to decrease proportionately, although some data suggest that these remain stable in healthy older adults (Timiras, 2003). The adrenal response to ACTH is also fairly well preserved, although some recent data suggest that there may be some reduced sensitivity (Giordano, DiVito, et al., 2001). Further, the circadian profile flattens (Carvalhaes-Neto, Ramos, et al., 2002; Ferrari, Casarotti, et al., 2001) and there may also be alterations in the circannual (yearly) rhythmicity of total cortisol and free cortisol. A summary of the changes that occur with age in the hypothalamic-pituitary-adrenal cortisolaxis with age, as listed below, emphasizes the current controversial state of the data but do suggest that the older adult has less reserve and may be less able to adapt to various physiologic and psychologic challenges.

  • Plasma ACTH levels & Circadian rhythm: No significant change
  • ACTH response to CRH stimulation: No significant change
  • Cortisol response to ACTH stimulation: No significant change vs. diminished sensitivity
  • Basal plasma cortisol levels: No significant change or some increase (increase found mainly in corticosterone in animals)
  • Production and Clearance of cortisol: Decreased vs. possibly no significant change
  • Feedback inhibition of the ACTH-CRH-Cortisol loop: Decreased sensitivity or no significant change

 


Module 6: Exploring Age-Related Body Systems Changes
6.2.8 Case 2: Discussion
6.2.10 Aging, the Stress Response,…